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AEi nds fwher e
neutrons ar e

A Need for reactors,
medical treatment,
shielding, etc.

A High-fidelity flux needed
for good designs

A Better designs are
beneficial to society




A Six areas of phase space: location (3),
direction (2), energy (1)

A Systems of interest can
be geometrically large
and/or require fine
discretizations

AE.g.: 78.5 billion
unknowns

A Coupled multi-physics




Cutting-Edge Machines

A New machines have

large memory and many

cores

A Enable solution of
nNngrand chal
problems

A Do we have transport
codes that can use

these machines? s

Peak Teraflops 2,332

Six-Core AMD Opterons 37,378
Quad-Core AMD Opterons 7.832
AMD Qpteron Coras 224,256 31,328
Compute Nodes 18688 7832
Memary (TB) 299 62

e udo n@ana@dtt@}&'s ) 478 100

Disk Space (TE) 10,000 750
Intercannect Bandwidih T4 157
Floor Space (ft?) 4 352

Coaling Technology Liquid
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Transport Equation

-V 4+ X(F, E)|o(7,Q, E) =
/dE’/dQ’ (7, E' — E,Q - Q(F, Y, E")

T)/dE’VE( )/ Ay (7, Y, E)

o (T, (AZ, F) is the angular neutron flux in neutrons per unit length squared
per steradian,

e Y (FE) is the fission spectrum,

e k is the eigenvalue, which can be thought of as the asymptotic ratio of the
number of neutrons in one generation to the number in the next,

e Y s are probabilities of interaction with units of inverse length,

e v is the average number of neutrons released per fission.



Operator Form

A After discretization, operator form:

Fad

e L =0V + % is the transport operator,

M converts harmonic moments into discrete angle sets,

D =M"W =3, ¥, w,

is the discrete-to-moment operator.

J contains the fission source, v ;

F=xf',

S 1s the scattering matrix,

Ly = MS¢ + %MF@

¢ = D1




Traditional Solution Methods

A Inner (within-group) iterations over space-angle:
I Accelerated Source lIteration (SI)
I Krylov Methods

A Outer iterations over energy:
I Accelerated Gauss Seidel (GS)
I SOR
A Eigenvalue needs additional outer iteration:
I Power lteration (PIl) or Inverse Power Iteration

A Parallelization over space and angle is common
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Denovo's Limitations
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A (1,3,K) mesh cells Yo s i s
A ») bl k . LTSN ///////j/;/f/; z ////j/;/;/;/;/// //////
| OC S In X ¥ ////////////ﬂ//////////// //
A 5 bl k . / //////////// /////////////// ///////// //
3 BIOCKS IN'Y ) i i, |y g, - // 1z
. /
A P, x P, domains i
. M
A 1 domain/core Vo
: : AU
A Domain size Wy
/
A B, z-blocks /4

per domain
A Block size = (1, J,, K,)
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¥ KBA: Parallel Efficiency

ALarger P, P;, and By = A U= /
smaller blocks ////f //é////%///
A Should allow more work £/ /%///////
at once .
////
A M angle sets //
Ae: ratio of useful to total Z
computation /1/
B 2M B Z
maT = OMBg + P + Py — 2 /

12



Latency

Strong Scaling:
1.0 @~ 4 1.0 .
L e, 400 x 400 x 400 cells
‘R
091 1 09 1 12to 3,600 cores
. _
0.8} : 1 08 1 Mand By are fixed
> 071 > 07l , | LargeBy= smaller
g g blocks
£ 0.6} ; 15 0.6 l '
@ ~_ @ Increasing P, and P; =
05k . | osl | more cores =
smaller blocks
0.4} : 1 04} .
°e Smaller blocks = poor
03} |e—e theoretical| { 03} |e—e theoretical| | performance
e e actual e o actual
10! 10° 10° 10 10! 10° 10° 10*
cores cores
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New Methods are Needed

A Very large machines + very large problems

A Denovo cannot fully take advantage of the Jaguar
machine

A Some of the solvers will converge slowly for
problems of interest

A Strategies for overcoming obstacles:
1. Decompose in energy: block Krylov
2. New eigenvalue solver: ROI

3. New preconditioners: multigrid in energy;
split shifted scattering matrix

14
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Upscattering and Energy Decoupling

Block Krylov
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Krylov Methods are Powerful

A Solutions to Ax = b (Ae =r = Ax i b) formed
iteratively from Krylov subspace:

Kir(A,v1) = span{vi, Avy, A%y, ..., A" 1o}

Useful:

A because robust, often converge quickly, easy
to precondition, only matrix-vector products

A when A is large, not explicitly formed, sparse
A Drawbacks: can create large subspaces
A Restart methods available

16
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\w, Gauss Seidel: Upscattering Couples

Equations in Energy

A Scattering to own group, lower group, higher
group

A GS does the outer (energy) iteration
AForg=1-G,doi mner (space angle) iteration:

(I DL [M][S],, )6]; DL~ [M]( Z[S]gg gy
A X

A Update right hand side, repeat loop for
upscattering groups until convergence

17



0 Krylov Within a Group:

Apply A

A The Aztec solver needs b, a solution vector, and to
know how to Apply A:

The action of A is implemented by
doing the following for a group g:

""" T T T 1. matrix-vector multiply:
(I — DL M][S],,)[¢]: =
(- DL~ [M][S]g)1¢l; vy = [M][S],y0,.

2. sweep: z5 = DL_lyg,

3. return: Vg < Vg — Z4.

18



: _ Downscatter Block
o1 [Slo9 0 0 0!

Upscatter Source

155 Upscatter Block

= ey
—_—
oy
=
==

'v' 'v'

A b
A Can hand a block to Krylov solver

A Because decoupled, can break into energy sets
and solve in parallel

19



= Krylov for Energy Sets:

|
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WISCONSIN Apply A

A Each set does its part of the matrix-vector multiply
A Each term of s can be done independently

/81\ /Sll _ 0 0 0 0 \ /’Ul\
S2 Slj21 [S]22 0 0 0 v
i | S S (S I8 B
| 54} Sl [Slaz |[Sas! [S]aa; [Slas!|iva,
\ 55/ \[S]51 [S]52 [Sls31 [S]sa! 11S]55) Y

A All the pieces of s are communicated
A The rest of the application of A proceeds as before2

0



A Each energy set gets all
of the spatial blocks

P

4 x4

blocks

A Domains =
sets X blocks =
3 sets # MPI processes

/Y\s

28 29 30 31 L 45

domains = 16 X 3
21
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Upscattering and Energy Decoupling

Results
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2 X 2 spatial cells/pin
17 x 17 pins/assembly

289 assemblies: I e e L]
132 reflector, v RS
159 fuel of varying T
enrichment

S,,: 168 angle sets
Py: 1 moment

1 spatial unknown/cell;
233,858,800 cells

44 groups, homogenized fuel pins

23



Full PWR-900: Strong Scaling

Doubling of Spatial Blocks
Case | Blocks Sets Domains Min ! f |
| 10,200 11 112,200 4961 |
I 5,040 22 110,880 = 53.61 @ £
30
- 9,024 22 | 198528 @ 3499 |
g 20 i
e o measured
base_domains 100000 125|000 150|000 175|000 200000
t_perfect =( —) Cores
used_domalns D!oubling of!Energy Set:s
X base_time ol | ; ;
.’g 40
Compare to | Perfect Actual | Efficiency = g3
| (energy) 28.04 34.99 0.80 S 20} -
Il (space) 29.94 34.99 0.86 1o[e—e finear |
e - measured ' '

. i ;
100000 125000 150000 175000 200000
Cores
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Solver Blocks @ Groups

Sets

Domains | Time (min)

Pl+TTG GS 17,242 2

17,242 11.00

Pl + MG Krylov = 10,200 44

11

112,200 38.33

1.20

t_adjusted = 11.21 =
[(44)( 17,424
2 7°112,200

S 100k

2 groups: 78.5 billion

unknowns

0.75

Weak Scaling for PWR Problem

)] % 38.33 110

B 0.95 oo

unknowns
44 grOupS 173 trI”IOﬂ 085 b ]

0

I
20000

I I I I
40000 60000 80000 100000
cores

120000
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Full PWR 900: 2 groups

Solver Blocks = Sets | Domains | Time (min)
PIl+TTG GS 17,242 1 17,242 11.00
Pl + MG Krylov 10,200 2 20,400 3.03

Toy problem: 50 x 50 x 50, 1 spatial unknown/cell; P;
S,; half Fe, half graphite; 26 groups, 13 upscattering

Solver Inner Its Quter Its Time (min)
GS ~124 GMRES 44 GS 478
MG Krylov N/A 43 GMRES 58.5
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Block Krylov met Goals

A The MG Krylov solver performed well in both
strong and weak scaling studies

A It allows Denovo to use O(100,000) cores,
overcoming the KBA limitation

A Using Krylov for upscattering is faster than using
accelerated Gauss Seidel

27



Eigenvalue Acceleration

Eigenvalue Acceleration
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Eigenvalues and

Power lteration

c(A)={A € C:rank(A — AI) < n}
A Dominant eigenmode governs steady state reactor
behavior: | A | < |2 < -+ < A,
A Critical when eigenvalue is 1
A Power iteration (PI) uses these facts:
Akl‘@ — /\fﬁ?i
Vo = V1T1 T+ 72X3 + T YnTn
AFvg =y \iey + v Xao + -+ X E
A As k goes to infinity, the first term dominates.
A Converges as i g 2], the dominance ratio

29
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Inverse lteration IS Faster

A For some shift, 1, (A — uI) has same eigenvectors
as A

A If invertible, o(J[A — pI]™Y) = {1/(A —p) : A € 0(A)}
A Eigenvalues near shift become separated

1 1 1
R : L] - -

K1 —

A As 1 — A1, k1 — 00; other terms stay finite

A Convergence rate becomes =4 ﬁ}

A Like power iteration on (A — pI)~!
A Wielandt's method: (A — A\.F)¢ = 6AF¢

30
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A If x is close to an eigenvector of A, the Rayleigh
guotient (rq) approximates the corresponding

eigenvalue: 7
p(A, z) = p(x) = &40

xr— I

A Useful properties:
e a# 0, plaz,A) =p(z, A),

o p(x,A—aol)=p(r,A) — «
o [[(A—B)zl]* <[[Az|]* —[|p(x)z]]%

with equivalence only when g = p(x)

o Kr(A,z)=Kr(A —ul, z)

31



RQI i1s Faster Still

A Rayleigh Quotient Iteration (RQI): shifted inverse
iteration with an optimal shift

A Works for non-normal matrices
RQI algorithm:

Choose a starting unit vector, vy, then for £k =0,1,2, ...
Form pp = p(vy) = v Ay,
Solve (A — pg)wr4+1 = vk,

: - WEk+1
Normalize Vik+1 =— m

Check for convergence.
32
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A RQI wi

A New Eigenvalue Solver

| be the new solver, with the shift applied:

I—T(S +pF)]¢ = (A — p)TF¢
Now define S = S + pF to write
I—TS]¢ = (A — p)TF¢

A The shifted scattering matrix will look like there is
upscattering in every group

A Can solve with MG Krylov solver

33



ROl + MG Krylov Algorithm

Choose a starting unit vector, vg, and form py = p(vg) = vd Awy.
Break the problem into energy sets and distribute
For k=10,1,2,...

In each energy set, use the MG Krylov solver on [I — Tg]gwg =y

where applying A means:

—~ —

matrix-vector multiply: y? = [MS]9v9,
sweep: z9 = [DL™")9y9,
return: v9 « v9 — 29,

g g .3
If v9 has converged, return wy,_ ; = v9.

Once all energy sets have converged, assemble w1 from the w] 418

Normalize vy = ”w""’—“” and update the fission source,

W41

~

_ _ T
Form py41 = p(vx) = U}<;+1Agvk;- 34



Preconditioning

Preconditioning
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Preconditioning Basics

A Multiply A by some matrix that is close to A1
M tAz=M"1b
AM™ 'y =, r=M""y
M;'AM; 'y =M;'s, M=MM,, z=M,'y
A Goal: more favorable properties

A Should be easier to solve; M1 cheap to construct
and apply

A Matrix-based: use structure of A

A Physics-based: use information from physical
problem

36



Preconditioning

Multigrid in Energy
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Multigrid Basics

A Au =Db; vis approx; r=bi Av; exact error = e
A n+1 grid points with spacing h; grid is "

A Initial guess is some combo of Fourier modes:

v = Sin(j%) ,

A Error in initial guess will k=1
also look like Fourier

A Experiment: apply
iterative method to modes,
see what happens

0<j53<n, 1<k<n-1

38



P9

\W/

.. Making Error Oscillatory

A lterative methods damp high frequencies
A Low frequencies Iook oscillatory on coarser grids

WANYA

k=4 on n=12

lteration k=4 on n=6

A Smooth error is now oscillatory on coarse grid
A Relax on coarse grid to remove this error 39



