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Introduction 

Motivation 
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Neutron Transport is Important 

ÅFinds ñwhere all the 

neutrons areò 

ÅNeed for reactors, 

medical treatment, 

shielding, etc. 

ÅHigh-fidelity flux needed 

for good designs 

ÅBetter designs are 

beneficial to society 
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Transport Problems are Large 

ÅSix areas of phase space: location (3), 

direction (2), energy (1) 

ÅSystems of interest can 

be geometrically large 

and/or require fine 

discretizations 

ÅE.g.: 78.5 billion 

unknowns 

ÅCoupled multi-physics 
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Cutting-Edge Machines 

ÅNew machines have 

large memory and many 

cores 

ÅEnable solution of  

ñgrand challengeò 

problems 

ÅDo we have transport 

codes that can use 

these machines? 



Transport Equation 



Operator Form 

ÅAfter discretization, operator form: 



Traditional Solution Methods 

ÅInner (within-group) iterations over space-angle: 

ï Accelerated Source Iteration (SI) 

ï Krylov Methods 

ÅOuter iterations over energy: 

ï Accelerated Gauss Seidel (GS) 

ï SOR 

ÅEigenvalue needs additional outer iteration: 

ï Power Iteration (PI) or Inverse Power Iteration 

ÅParallelization over space and angle is common 
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Introduction 

Denovo's Limitations 



11  

KBA: Space-Angle Decomposition 

Å(I,J,K) mesh cells 

ÅPI blocks in x 

ÅPJ blocks in y 

ÅPI x PJ domains 

Å1 domain/core  

ÅDomain size   

= (Ib, Jb, K) 

ÅBK z-blocks  

per domain 

ÅBlock size = (Ib, Jb, Kb) 
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KBA: Parallel Efficiency 

ÅLarger Pi, Pj, and BK = 

smaller blocks 

ÅShould allow more work 

at once 

ÅM angle sets 

Å  : ratio of useful to total 

computation 
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KBA: Communication Latency 

Strong Scaling: 

400 x 400 x 400 cells 

12 to 3,600 cores 

M and BK are fixed 

Large BK = smaller 

blocks 

Increasing PI and PJ = 

more cores = 

smaller blocks 

Smaller blocks = poor 

performance 

Small BK = low    max 
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New Methods are Needed 

ÅVery large machines + very large problems 

ÅDenovo cannot fully take advantage of the Jaguar 

machine 

ÅSome of the solvers will converge slowly for 

problems of interest 

ÅStrategies for overcoming obstacles: 

1. Decompose in energy: block Krylov 

2. New eigenvalue solver: RQI 

3. New preconditioners: multigrid in energy; 

split shifted scattering matrix  
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Upscattering and Energy Decoupling 

Block Krylov 
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Krylov Methods are Powerful  

ÅSolutions to Ax = b (Ae = r = Ax ï b) formed 

iteratively from Krylov subspace: 

 

 

Useful: 

Åbecause robust, often converge quickly, easy 

to precondition, only matrix-vector products 

Åwhen A is large, not explicitly formed, sparse 

ÅDrawbacks: can create large subspaces 

ÅRestart methods available 
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Gauss Seidel: Upscattering Couples 
Equations in Energy  

ÅScattering to own group, lower group, higher 

group 

ÅGS does the outer (energy) iteration 

ÅFor g = 1 - G, do inner (space-angle) iteration: 

 

 

 

 

ÅUpdate right hand side, repeat loop for 

upscattering groups until convergence  

 

b A x 
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Krylov Within a Group: 
Apply A 

ÅThe Aztec solver needs b, a solution vector, and to 

know how to Apply A:  

 

b A x A 
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Block Krylov: Decouples Energy  

ÅRearrange to decouple in energy 

 

 

 

 

 

 

ÅCan hand a block to Krylov solver 

ÅBecause decoupled, can break into energy sets 

and solve in parallel  

Downscatter Block  

Upscatter Source  

Upscatter Block  



ÅEach set does its part of the matrix-vector multiply 

ÅEach term of s can be done independently 

 

 

 

 

 

 

ÅAll the pieces of s are communicated 

ÅThe rest of the application of A proceeds as before 
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Krylov for Energy Sets: 
Apply A 
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Energy Set Decomposition  

ÅEach energy set gets all 

of the spatial blocks 

ÅDomains =  

sets x blocks =  

# MPI processes  

 

4 x 4  
blocks  

3 sets  

domains = 16 x 3  
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Upscattering and Energy Decoupling 

Results 
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Full PWR-900: Test Problem 

2 x 2 spatial cells/pin 

17 x 17 pins/assembly 

289 assemblies:  

132 reflector,  

159 fuel of varying  

enrichment 

S12: 168 angle sets 

P0: 1 moment 

1 spatial unknown/cell;  

233,858,800 cells 

44 groups, homogenized fuel pins 
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Full PWR-900: Strong Scaling 

Compare to Perfect Actual Efficiency 

I (energy) 28.04 34.99 0.80 

II (space) 29.94 34.99 0.86 

Case Blocks Sets Domains Min 

I 10,200 11 112,200 49.61 

II 5,040 22 110,880 53.61 

III 9,024 22 198,528 34.99 
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Full PWR-900: Weak Scaling 

2 groups: 78.5 billion 

unknowns 

44 groups: 1.73 trillion 

unknowns 

 

 

 

Solver Blocks Groups Sets Domains Time (min) 

PI + TTG GS 17,242 2 1 17,242 11.00 

PI + MG Krylov 10,200 44 11 112,200 38.33 
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Block Krylov vs. Gauss Seidel 

Full PWR 900: 2 groups 

 

 

 

 

Toy problem: 50 x 50 x 50, 1 spatial unknown/cell; P0; 

S4; half Fe, half graphite; 26 groups, 13 upscattering 

 

 

 

Solver Blocks Sets Domains Time (min) 

PI + TTG GS 17,242 1 17,242 11.00 

PI + MG Krylov 10,200 2 20,400 3.03 

Solver Inner Its Outer Its Time (min) 

GS ~124 GMRES 44 GS 478 

MG Krylov N/A 43 GMRES 58.5 
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Block Krylov met Goals  

ÅThe MG Krylov solver performed well in both 

strong and weak scaling studies 

 

ÅIt allows Denovo to use O(100,000) cores, 

overcoming the KBA limitation 

 

ÅUsing Krylov for upscattering is faster than using 

accelerated Gauss Seidel 



28  

Eigenvalue Acceleration 

Eigenvalue Acceleration 
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Eigenvalues and  
Power Iteration  

 

ÅDominant eigenmode governs steady state reactor 

behavior: 

ÅCritical when eigenvalue is 1 

ÅPower iteration (PI) uses these facts: 

 

  

 

ÅAs k goes to infinity, the first term dominates. 

ÅConverges as       , the dominance ratio 
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Inverse Iteration is Faster  

ÅFor some shift,   ,                has same eigenvectors 

as A 

ÅIf invertible, 

ÅEigenvalues near shift become separated 

 

 

ÅAs                           ; other terms stay finite 

ÅConvergence rate becomes          

ÅLike power iteration on 

ÅWielandt's method:  

   

0 
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The Rayleigh Quotient  

ÅIf x is close to an eigenvector of A, the Rayleigh 

quotient (rq) approximates the corresponding 

eigenvalue: 

 

ÅUseful properties: 
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RQI is Faster Still  

ÅRayleigh Quotient Iteration (RQI): shifted inverse 

iteration with an optimal shift 

ÅWorks for non-normal matrices 

   RQI algorithm: 
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A New Eigenvalue Solver  

ÅRQI will be the new solver, with the shift applied: 

 

 

 

 

ÅThe shifted scattering matrix will look like there is 

upscattering in every group 

 

ÅCan solve with MG Krylov solver 
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RQI + MG Krylov Algorithm  
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Preconditioning 

Preconditioning 
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Preconditioning Basics  

ÅMultiply A by some matrix that is close to A-1 

 

 

 

 

ÅGoal: more favorable properties 

ÅShould be easier to solve; M-1 cheap to construct 

and apply 

ÅMatrix-based: use structure of A 

ÅPhysics-based: use information from physical 

problem 
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Preconditioning 

Multigrid in Energy 



k=6  

k=1  

k=3  

ÅAu = b; v is approx; r = b ï Av; exact error = e 

Ån+1 grid points with spacing h; grid is       

ÅInitial guess is some combo of Fourier modes: 

 

ÅError in initial guess will 

also look like Fourier 

ÅExperiment: apply  

iterative method to modes, 

see what happens 

38  

Multigrid Basics  
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ÅIterative methods damp high frequencies 

ÅLow frequencies look oscillatory on coarser grids 

 

 

 

 

 

 

ÅSmooth error is now oscillatory on coarse grid 

ÅRelax on coarse grid to remove this error 

 

 

   

k=4 on n=12  

k=4 on n=6  Iteration  

k=6  

k=3  

k=1  

Making Error Oscillatory  


